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Abstract

For a non-decreasing sequence of positive integers S = (s1, s2, . . .), the S-

packing chromatic number χS(G) of G is the smallest integer k such that the

vertex set of G can be partitioned into sets Xi, i ∈ [k], where vertices in Xi

are pairwise at distance greater than si. In this paper we introduce S-packing

chromatic vertex-critical graphs, χS-critical for short, as the graphs in which

χS(G− u) < χS(G) for every u ∈ V (G). This extends the earlier concept of the

packing chromatic vertex-critical graphs. We show that if G is χS-critical, then

the set {χS(G) − χS(G − u); u ∈ V (G)} can be almost arbitrary. If G is χS-

critical and χS(G) = k (k ∈ N), then G is called k-χS-critical. We characterize

3-χS-critical graphs and partially characterize 4-χS-critical graphs when s1 > 1.

We also deal with k-χS-criticality of trees and caterpillars.
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1 Introduction

The packing chromatic number χρ(G) of a graph G is the smaller integer k for which

there exists a mapping c : V (G) → [k] = {1, . . . , k}, such that if c(u) = c(v) = ` for

u 6= v, then dG(u, v) > `. (Here and later dG(u, v) denotes the shortest-path distance

between u and v in G.) Such a map c is called a packing k-coloring. This concept

was introduced in [12], named with the present names in [4], and extensively studied

afterwards. See [1, 2, 19, 5, 9, 17, 20], references therein, as well as [6] for a variant of

a facial packing coloring.

A far reaching generalization of the packing chromatic number, formally introduced

by Goddard and Xu in [13], but being implicitly present already in [12], is the following.

Let S = (s1, s2, . . .) be a non-decreasing sequence of positive integers. An S-packing

k-coloring of a graph G is a mapping c : V (G) → [k], such that if c(u) = c(v) = ` for

u 6= v, then dG(u, v) > s`. The S-packing chromatic number χS(G) of G is the smallest

integer k such that G admits an S-packing k-coloring. Note that if S = (1, 1, 1, . . .),

then we are talking about the standard proper vertex coloring and if S = (1, 2, 3, . . .),

then we deal with the packing coloring. For investigations of S-packing colorings

see [7, 8, 10, 11, 14, 18].

Now, in [16] the packing chromatic vertex-critical graphs were introduced as the

graphs G for which χρ(G− u) < χρ(G) holds for every u ∈ V (G). In this paper we are

interested if (and how) the results from [16] extend from packing colorings to S-packing

colorings. For this sake we say that G is S-packing chromatic vertex-critical (χS-critical

for short) if χS(G− u) < χS(G) holds for every u ∈ V (G). And, when χS(G) = k, we

say that G is k-χS-critical.

We proceed as follows. In Section 2, we list some known results and prove two

statements which will be used in the rest of the paper. In the subsequent section we

consider the effect of vertex removal on the S-packing chromatic number and prove two

realization theorems. Setting ∆χS(G) = {χS(G)− χS(G− u) : u ∈ V (G)}, the first of

these results asserts that if S = (1`, 2∞), ` ≥ 1, and A = {1, a1, . . . , ak}, k ≥ 1, is a set

of positive integers, then there exists a χS-critical graph G such that ∆χS(G) = A. In

Section 4, we give a complete characterization of 3-χS-critical graphs while in Section

5 we partially characterize 4-χS-critical graphs for packing sequences with s1 > 1.

Finally, in Section 6 we show that a k-χS-critical tree exists for any positive integer

k, investigate k-χS-criticality of caterpillars for sequences S = (1, sk−12 ), and give some

examples of such critical cattepillars.
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2 Preliminaries

The order of a graph G will be denoted with n(G). A graph consisting of a triangle

and an edge with one end vertex on the triangle will be denoted by Z1 (see also the

top-right graph in Fig. 2).

We will be interested in non-decreasing finite or infinite sequences S = (s1, s2, . . .)

of positive integers, but exclude the constant sequence (1, 1, . . .) because it leads to the

chromatic number for which critical graphs are already well-studied, cf. [15]. For any

other sequence S we will say that S is a packing sequences. If in a packing sequence

a term i is repeated ` times, we will abbreviate the corresponding subsequence by i`.

For instance, if S = (1, . . . , 1, s`+1, . . .), that is, if S starts with ` terms equal to 1, then

we will write S = (1`, s`+1, . . .). Moreover, we will use the same convention for infinite

constant subsequences. For example, (1`, 2, 2, . . .) will be abbreviated (1`, 2∞).

Let G be a graph and k ≥ 1. A set of vertices A ⊆ V (G) is a k-independent set

of G if A can be partitioned into k independent sets. The cardinality of a largest k-

independent set of G is denoted by αk(G). Note that αk(G) can equivalently be defined

as the maximum number of vertices of a graph G that can be properly colored using k

colors. We now recall a series of results from [13] that will be used later.

Lemma 2.1 ([13, Observation 2]) Let S be a packing sequence. If H is a subgraph of

G, then χS(H) ≤ χS(G).

Proposition 2.2 ([13, Proposition 4]) Let S = (s1, s2, . . . ) be a packing sequence and

let G be a nonempty connected graph.

1. If s1 = s2 = 1, then χS(G) = 2 if and only if G is bipartite.

2. If s1 = 1 and s2 > 1, then χS(G) = 2 if and only if G is a star.

3. If s1 ≥ 2, then χS(G) = 2 if and only if G ' K2.

Proposition 2.3 ([13, Proposition 6]) Let S = (1`, s`+1, . . .), where ` ≥ 1 and s`+1 ≥
2, and let G be a graph with diam(G) = 2. Then χS(G) = n(G)−α`(G)+min{`, χ(G)}.

Proposition 2.4 ([13, Proposition 20]) Let G be a connected graph and S = (2, 2, 2).

Then G has a χS-packing coloring if and only if G is a path of any length or a cycle

of lenght a multiple of 3.

Proposition 2.5 ([13, Corollary 21]) Let G be a connected graph and S = (s1, s2, s3),

where s1 = 2 and s3 ≥ 3, be a packing sequence. If G has a χS-coloring, then n(G) ≤ 5.
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We conclude the preliminaries with two simple observations.

Lemma 2.6 If S is a packing sequence and G is a χS-critical graph, then G is con-

nected.

Proof. Since χS(G) = maxi{χS(Gi)}, where Gi are components of G, it follows that

G must have only one component provided G is χS-critical. �

Lemma 2.7 Let S be a packing sequence. If u is a leaf of a graph G, then χS(G)−1 ≤
χS(G− u) ≤ χS(G).

Proof. By Lemma 2.1, χS(G−u) ≤ χS(G). Suppose that χS(G−u) = k. Then using

an optimal S-packing coloring of G − u, and using color k + 1 for the vertex u in G,

we obtain that χS(G) ≤ k + 1. Thus, χS(G) ≤ χS(G− u) + 1. �

3 Vertex-deleted subgraphs of χS-critical graphs

In [16, Theorem 3.1] it was shown that if G is a χρ-critical graph, then the set of

differences ∆χρ(G) = {χρ(G) − χρ(G − u) : u ∈ V (G)} can be almost arbitrary.

Hence the condition χρ(G−u) < χρ(G) for G to be χρ-critical cannot be replaced with

χρ(G − u) = χρ(G) − 1. We now show with a bit more involved construction than

the one from [16] that the same phenomenon (actually even more general) holds for all

sequences of the form (1`, 2∞). More precisely, setting

∆χS(G) = {χS(G)− χS(G− u) : u ∈ V (G)}

we have the following result.

Theorem 3.1 Let S = (1`, 2∞), ` ≥ 1, and let A = {1, a1, . . . , ak}, k ≥ 1, be a set of

positive integers. Then there exists a χS-critical graph G such that ∆χS(G) = A.

Proof. We may assume without loss of generality that 2 ≤ a1 < · · · < ak.

Take a cycle of length 2k + 1 on vertices x1, . . . , x2k+1 (in the natural order) and

additional disjoint cliques Qi, i ∈ [2k+ 1], where n(Qi) = adi/2e+ `− 1 for i ∈ [2k] and

n(Q2k+1) = ak + `− 1. Then for every i ∈ [2k + 1] and for every vertex x of Qi, make

x adjacent to each of the vertices xi, xi+1, and xi+3, xi+5, . . . , xi−2, where indices are

taken modulo 2k + 1. Denote the constructed graph with G(`; a1, . . . , ak), see Fig. 1

for the graph G(2; 2, 4).
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Figure 1: The graph G(2; 2, 4)

Note that the vertices of the clique Qi together with the vertices xi and xi+1 form a

clique of order adi/2e+`+1. Denote this latter clique with Q′i. To simplify the notation

we set G = G(`; a1, . . . , ak) for the rest of the proof.

We claim first that diam(G) = 2. For each ui ∈ Qi and each uj ∈ Qj, dG(ui, uj) ≤ 2

since some of xj, xj+1 is adjacent to both ui and uj by the definition of G. Analogously,

for any xi and any u ∈ Qj, either xiu ∈ E(G) or xi+1u ∈ E(G) and clearly xixi+1 ∈
E(G), implying that dG(xi, u) ≤ 2. Finally, for any xi and xj, either xixj ∈ E(G)

or xi is adjacent to each vertex of Qj−1 or Qj, implying that dG(xi, xj) ≤ 2 since

xjuj ∈ E(G) for every uj ∈ Qj−1 ∪Qj.

We have thus shown that diam(G) = 2. Note that each clique Q′i has order greater

than `, hence χ(G) ≥ ω(G) > `. Then Proposition 2.3 implies that χS(G) = n(G) −
α`(G)+ `. Moreover, α(G) = 2k+1 and selecting ` vertices from each of the cliques Qi

we find an `-independent set of order `(2k+1). So α`(G) = `(2k+1) and consequently

χS(G) = n(G)− 2k` = (2k + 1) + 2
k∑
i=1

(ai + `− 1) + (ak + `− 1)− 2k`

= (2k + 1) + 2
k∑
i=1

ai + 2k`− 2k + (ak + `− 1)− 2k` = 2
k∑
i=1

ai + ak + ` .

Let i ∈ [2k + 1] and let x be an arbitrary vertex of Qi. Having in mind that

n(Qi) ≥ `+1 we can repeat the above argument on the graph G−x to get χS(G−x) =
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∑k

i=1 ai + ak+1 + `− 1. Hence χS(G)− χS(G− x) = 1.

Consider now the graph G−x2i, where i ∈ [k]. Note that in G, n(Q′2i−1) = n(Q′2i) =

ai + `+ 1 and that x2i is the unique common vertex of Q′2i−1 and Q′2i. If u ∈ V (Q2i−1)

and v ∈ V (Q2i), then in G, the vertex x2i is the unique common neighbor of u and v. It

follows that dG−x2i(u, v) = 3. On the other hand, for any other pair of vertices u′ and

v′ of G− x2i we have dG−x2i(u
′, v′) = dG(u′, v′). In particular, dG−x2i(x2i−1, x2i+1) = 2.

Since α`(G−x2i) = `(2k+1), we can select ` vertices from each of the cliques Qi to

form the first ` color classes. In addition, in V (Q′2i−1)− {x2i} and V (Q′2i)− {x2i} we

have ai − 1 pairs of vertices that are pairwise at distance 3. We can respectively color

these pairs with colors ` + 1, . . . , ` + ai − 1. Because of the distances, every other not

yet colored vertex requires its private color. Hence, with respect to the above optimal

coloring of G, we have saved ai − 1 colors. Since clearly n(G − x2i) = n(G) − 1, we

thus have χS(G− x2i) = 2
∑k

i=1 ai + ak+1 + `− (ai− 1)− 1, which in turn implies that

χS(G)− χS(G− x2i) = ai.

We have proved by now that A ⊆ ∆χS(G). Finally, since ai < ai+1, by arguments

parallel to the above arguments for x2i we deduce that χS(G) − χS(G − x2i+1) = ai.

We conclude that A = ∆χS(G). �

We proceed with the case where a packing sequences contains an element which

is at least 3. To prove that the set of differences ∆χS(G) can be almost arbitrary for

this case, we can follow the same line of thought than in the proof of [16, Theorem

3.1] for packing colorings, with a few key differences in the proof. What follows is the

S-packing coloring version of this theorem.

Theorem 3.2 Let S be a packing sequence such that there exists ` ≥ 1 with s` ≥ 3,

and let A = {1, a1, . . . , ak}, k ≥ 1, be a set of positive integers. If for every i ∈ [k] we

have
k∑

j=1,j 6=i

aj ≥ ai − 1, then there exists a χS-critical graph G such that ∆χS(G) = A.

Proof. Let S = (s1, s2, . . .) be a packing sequence and ` ≥ 1 the smallest positive

integer such that s` ≥ 3.

First suppose that k ≥ 2, and let V (Kk) = {x1, . . . , xk}. We denote byG(`; a1, . . . , ak)

the graph obtained from Kk such that for every i ∈ [k], a vertex of a complete graph

Xi of order ai + `− 1 is identified with xi. Again, we simplify the notation by setting

G = G(`; a1, . . . , ak) in the remainder of the proof. We first observe that

n(G) =
k∑
i=1

n(Xi) =
k∑
i=1

(ai + `− 1) =
k∑
i=1

ai + k(`− 1).
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If c is a χS-coloring of G, then the vertices of Xi, i ∈ [k], receive pairwise different

colors. To be more precise, we have |c−1(j)| ≤ k for any j ≤ ` − 1. Moreover, since

diam(G) = 3, |c−1(j)| ≤ 1 for any j ≥ `. Since ai ≥ 2, and so ai + ` − 1 ≥ ` + 1, in

each Xi colors 1, . . . , `− 1 can be used. Therefore,

χS(G) = (`− 1) + (n(G)− k(`− 1)) = (`− 1) +
k∑
i=1

ai. (1)

Since k ≥ 2, for at least one ai we have ai ≥ 3. Without loss of generality we can

assume that a1 ≥ 3. Let u ∈ V (X1) be an arbitrary vertex different from x1. Then

G− u is isomorphic to G(`; a1 − 1, a2, . . . , ak) (it is possible that a1 − 1 = ai for some

i ≥ 2). By (1) we get

χS(G− u) = (`− 1) + (a1 − 1) +
k∑
i=2

ai =
k∑
i=1

ai + (`− 2) = χS(G)− 1.

This shows that 1 ∈ ∆χS(G).

Now we consider the vertex-deleted subgraph G−xi, i ∈ [k]. Since xi is a cut-vertex,

and using (1), we have

χS(G− xi) = max{χS(Kai+`−2), χS(G(`; a1, . . . , ai−1, ai+1, . . . , ak))}

= max

{
ai + `− 2, (`− 1) +

k∑
j=1,j 6=i

aj

}

= (`− 1) +
k∑

j=1,j 6=i

aj,

where the last inequality follows from the assumption
k∑

j=1,j 6=i

aj ≥ ai−1. It follows that

χS(G)− χS(G− xi) =

(
(`− 1) +

k∑
i=1

ai

)
−

(
(`− 1) +

k∑
j=1,j 6=i

aj

)
= ai,

and we get ai ∈ ∆χS(G) for every i ∈ [k].

Suppose now that k = 1, and A = {1, a}, where a ≥ 2. In this case, let ` ≥ 1

be the smallest index with s` ≥ 2 (not 3 as in the previous case). Let G be the

graph obtained from two disjoint copies of Ka+`−1 by identifying a vertex from one

copy with a vertex from the other copy, and let x be the identified vertex. We have
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n(G) = 2(a+`−1)−1 = 2(a+`)−3 and χS(G) = (`−1)+(n(G)−2(`−1)) = 2a+`−2,

since diam(G) = 2. If u is a vertex of G different from x, then χS(G− u) = (`− 1) +

((n(G)− 1)− 2(`− 1)) = 2a+ `− 3. Thus, χS(G)− χS(G− u) = 1. To end the proof,

we notice that χS(G−x) = χS(Ka+`−2) = a+ `−2, and hence χS(G)−χS(G−x) = a.

�

4 3-χS-critical graphs

If S is an arbitrary packing sequence, then it is clear that K2 is the unique 2-χS-critical

graph. In the following theorem we give a complete list of all 3-χS-critical graphs with

respect to a given packing sequence S.

Theorem 4.1 Let S be a packing sequence and let G be a graph.

1. If S = (1, 1, . . .), then G is 3-χS-critical if and only if G ∈ {C2k+1 : k ≥ 1}.

2. If S = (1, s2, . . .), s2 ≥ 2, then G is 3-χS-critical if and only if G ∈ {C3, C4, P4}.

3. If S = (s1, s2, . . .), s1 ≥ 2, then G is 3-χS-critical if and only if G ∈ {C3, P3}.

Proof. Let G be a 3-χS-critical graph. Then G is connected by Lemma 2.6. Clearly,

n(G) ≥ 3. If n(G) = 3, then G is either C3 or P3. Clearly, C3 is 3-χS-critical

for every packing sequence S, while P3 is 3-χS-critical exactly for packing sequences

S = (s1, s2, . . .), where s1 ≥ 2. For the rest of the proof we may thus assume that

n(G) ≥ 4.

Let u ∈ V (G) be an arbitrary vertex of G. Since G is a 3-χS-critical graph, we have

χS(G− u) = 2 or χS(G− u) = 1. The later case means that G− u is a disjoint union

of isolated vertices, and hence G would be 2-colorable for every packing sequence S.

Henceforth χS(G − u) = 2 holds. We now distinguish three cases with respect to the

shape of S.

Case 1. s1 = s2 = 1.

In this case it is clear that χ(G − u) = χS(G − u) = 2, and hence G − u is a disjoint

union of connected bipartite graphs and isolated vertices. If u would be adjacent to

vertices from at most one partition of each of the bipartite graphs, then G would be

2-colorable. Thus there exists at least one connected bipartite component of G−u, say

G1, such that u has neighbors in both bipartition sets of G1 and such that the subgraph

induced by V (G1) ∪ {u} contains an odd cycle C2k+1, k ≥ 1. Then V (G) = V (C2k+1),

for otherwise removing a vertex not belonging to the cycle would yield a 3-colorable
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graph. Moreover, E(G) = E(C2k+1), for otherwise an additional edge would yield a

shorter odd cycle, so G would not be 3-χS-critical.

Case 2. s1 = 1, s2 ≥ 2.

In this case we can follow a similar line of thought than in the proof of [16, Proposition

4.1]. In view of Proposition 2.2, if u is a vertex of a 3-χS-critical graph G, then G− u
is a disjoint union of stars and isolated vertices. It is clear that G− u must contain at

least one star, say G1, for otherwise G would itself be a star. If G − u contains more

than one star, then G contains P5, and cannot be 3-χS-critical, because by removing

an end-vertex of P5, the obtained graph would contain a P4 for which χS(P4) = 3 for

every packing sequence S with s2 ≥ 2. Also, if G − u has more than one isolated

vertex, then removing one such vertex from G yields a graph with χS = 3. Thus, G−u
contains one star an at most one isolated vertex.

First suppose that G − u = G1. Since n(G) ≥ 4, the star G1 must have at least

two leaves. If u is adjacent to the center of G1, then since G itself is not a star, u is

adjacent to at least one leaf of G1. Removing one of the other leaves (say v) in G1 gives

a graph that contains C3, and χS(G− v) = 3, which is a contradiction. Therefore, u is

not adjacent to the center of G1, hence it is adjacent to at least one leaf of G1. If G1

contains at least three leaves, then G is not 3-χS-critical because then we can remove

a leaf and the obtained graph contains P4, for which, as already noticed, χS(P4) = 3

for every packing sequence S with s2 ≥ 2. Hence G1 must have exactly two leaves. If

u is adjacent to exactly one of them, we get P4, and if it is adjacent to both of them,

we get C4. Both graphs are 3-χS-critical for any packing sequence S with s2 ≥ 2.

The other case to consider is when G − u is a disjoint union of the star G1 and

an isolated vertex, say w. If G1 has at least two leaves, then we deduce as in the

subcase above that G is not 3-χS-critical. And if G1 = K2, then G is either P4, which

is 3-χS-critical for any packing sequence S with s2 ≥ 2, or Z1 which is not 3-χS-critical.

Case 3. s1 ≥ 2.

In this case, Proposition 2.2 implies that if u is a vertex of a 3-χS-critical graph G, then

G−u is a disjoint union of copies of K2 and isolated vertices. If G−u has more than one

K2, then G contains P5 and cannot be 3-χS-critical, since by removing an end-vertex

of P5 the obtained graph would still have a P4 which is 3-χS-colorable since s1 ≥ 2.

Also, if G − u contains isolated vertices, then G contains a path P4, and removing a

vertex from this path yields a P3 in G − u. Thus, χS(G − u) = 3 for any packing

sequence S with s1 ≥ 2, which is a contradiction. We conclude that G− u = K2 must

hold and therefore G = C3 or P3. Both remaining graphs are 3-χS-critical for every

packing sequence with s1 ≥ 2. �
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Note that Theorem 4.1 implies that C3 is the unique graph that is 3-χS-critical for

every packing sequence S.

5 On 4-χS-critical graphs

In this section we deal with the 4-χS-critical graphs for packing sequences with s1 ≥ 2.

All critical graphs from appear in Theorem 5.1 are depicted in Fig. 2.

Figure 2: The 4-χS-critical graphs for packing sequences S with s1 ≥ 2

Theorem 5.1 Let S = (s1, s2, . . . ) be a packing sequence with s1 ≥ 2, and let G be a

graph.

1. If s3 = 2, then G is 4-χS-critical if and only if G ∈ {K1,3, C4, Z1, K4 − e,K4}.

2. If s2 = 2 and s3 ≥ 3, then G is 4-χS-critical if and only if

G ∈ {K1,3, C4, Z1, K4 − e,K4, P6, C6}.

3. If s1 = 2 and s2 ≥ 3, then G is 4-χS-critical if and only if

G ∈ {K1,3, C4, Z1, K4 − e,K4, P5}.

4. If s1 ≥ 3, then G is 4-χS-critical if and only if G ∈ {K1,3, P4, C4, Z1, K4− e,K4}.

Proof. Let G be a 4-χS-critical graph. Then G is connected by Lemma 2.6. Clearly,

n(G) ≥ 4. Since s1 ≥ 2 we have ∆(G) ≤ 3, for otherwise G is not 4-χS-colorable

(χS(G) ≥ ∆(G) + 1).
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Claim 1 Let G be a 4-χS-critical graph different from K1,3 and let u ∈ V (G) be such

that χS(G− u) = 3. If G− u is disconnected, then dG(x) ≤ 2 for any x ∈ V (G− u).

Proof. Suppose that G − u consists of at least two components. Let to the contrary

G contain a vertex x 6= u of degree 3, and let G1 denote the component of G − u

containing x. Then, deleting any vertex y of G not belonging to G1 yields a graph with

dG−y(x) = 3, implying that G− y is not 3-χS-colorable, a contradiction. �

Case 1. s1 = 2.

First suppose that χS(G− u) = 1 for each u ∈ V (G). Then, clearly, G− u consists of

isolated vertices. Since n(G) ≥ 4 and dG(u) ≤ 3, we get K1,3. But deleting any leaf of

it we get a graph which is not 1-χS-colorable, which is a contradiction.

Now suppose that for each vertex u′ of G, χS(G− u′) ≤ 2 and there exists a vertex

u ∈ V (G) such that χS(G − u) = 2. By Proposition 2.2, G − u is a disjoint union of

at least one copy of K2 and some (possibly zero) isolated vertices. Clearly dG(u) ≤ 3.

Since n(G) ≥ 4, G − u is disconnected and hence dG(u) ≥ 2. If dG(u) = 2, then

G−u consists of two components and u has a neighbor in each of them, implying that

G ' Pk, where k ∈ {4, 5}. If k = 4, then χS(Pk) = 3 whenever s1 = 2, which is a

contradiction; if k = 5, then χS(Pk) = 4 when s2 ≥ 3, otherwise χS(Pk) = 3. Thus the

only critical graph for s2 ≥ 3 is P5.

Now assume that dG(u) = 3. If some vertex v of G−u is not adjacent to u in G, then

dG−v(u) = 3, implying that χS(G − v) ≥ 4 and hence G is not 4-χS-critical. If G − u
consists of three components, then each of these components must be K1, implying

that χS(G − u) = 1, which is a contradiction. Thus G − u has two components and

exactly one of them has two vertices. Then we get G ' Z1, but deleting the leaf of Z1

we get C3 which is not 2-χS-colorable, which is again a contradiction.

Finally suppose that G contains a vertex u such that χS(G − u) = 3. Clearly,

n(G− u) ≥ 3 and dG(u) ≤ 3.

Assume that dG(u) = 3. If some vertex v of G− u is not adjacent to u in G, then

∆(G − v) = 3, implying that χS(G − v) ≥ 4 and hence G is not 4-χS-critical. Thus

n(G− u) = 3. If G− u is disconnected, then each component of G− u has at most 2

vertices and hence χS(G− u) ≤ 2, which is a contradiction. Thus G− u is connected,

G− u ' G′ ∈ {P3, C3}, implying that G ∈ {K4 − e,K4}.
Now we assume that dG(u) ≤ 2 and consider the following possibilities.

Subcase 1.1 s3 = 2 (and also s1 = s2 = 2).

By Proposition 2.4, G−u consists of a disjoint union of K1, K2, some paths of arbitrary

lengths, and of cycles of lengths divisible by 3.
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Assume that dG(u) = 1. Since G is connected and n(G) ≥ 4, we infer that G−u '
G′ ∈ {Pk : k ≥ 3} ∪ {C3k : k ≥ 1}. Connecting u to an end-vertex of any path we

get a path which is still 3-χS-colorable, which is a contradiction. Connecting u to a

vertex of degree 2 of any path we get G ' K1,3, or a graph which is not 4-χS-critical,

since for any leaf v ∈ V (G), such that v is adjacent to a vertex of degree 2 in G, we get

∆(G− v) = 3 implying that χS(G− v) ≥ 4. Analogously, connecting u to a vertex of

a Ck, k > 3, we get a graph which is not 4-χS-critical. Connecting u with one vertex

of C3 we get G ' Z1.

Assume that dG(u) = 2 and recall that n(G− u) ≥ 3. If G− u is connected, then,

for G− u ' P3 we get G ' C4 or G ' Z1, for G− u ' C3 we get G ' K4− e, while in

any other case we get a graph which is not 4-χS-critical or is 3-χS-colorable (a path).

Thus let G − u be disconnected and consisting of two components G1 and G2. By

Claim 1, u is adjacent to vertices of degree 1 only. Thus G1 and G2 are both paths

and u is adjacent to one end-vertex of G1 and one endvertex of G2. Then G is a path,

hence it is 3-χS-colorable, which is a contradiction.

Subcase 1.2. s2 = 2 and s3 ≥ 3.

By Proposition 2.5, n(G − u) ≤ 5. Clearly ∆(G − u) ≤ 2 since χS(G − u) = 3 and

χS(G) ≥ ∆(G)+1. Since none of C4 and C5 is 3-χS-colorable, G−u is a disjoint union

of some copies of K1, K2, P3, C3, P4, and/or P5.

Assume that dG(u) = 1. Since G is connected and n(G) ≥ 4, the graph G − u

must be one of P3, C3, P4, and P5. If G − u ' C3, then G ' Z1. If u is adjacent to

an end-vertex of P3, P4, or P5, then we either get a 3-χS-colorable graph or P6, hence

G ' P6. If u is adjacent to the central vertex of P3, then G ' K1,3. If u is adjacent

to some vertex of P4 or P5 of degree 2, then we get a graph which is not 4-χS-critical

since χS(G− v) = 4 for any v ∈ V (G) with dG(v) = 1, and v is adjacent to a vertex of

degree 2 in G.

Assume that dG(u) = 2. If G − u is not connected, then u has a neighbor in

two distinct components of G − u, implying that ∆(G) = 2 by Claim 1. Thus we

get G ' P6 since P4 and P5 are both 3-χS-colorable. If G − u is connected, then

G − u ∈ {P3, C3, P4, P5} since n(G) ≥ 4. Then, for G − u ' P3 we get G ∈ {C4, Z1},
for G − u ' C3 we get G ∈ {K4 − e,K4}, and for G − u ' P5 we get G ' C6; in any

other case G is not 4-χS-critical.

Subcase 1.3. s2 ≥ 3.

Since s2 ≥ 3, s3 ≥ 3 as well. Hence, by Proposition 2.5, n(G − u) ≤ 5. Clearly,

∆(G− u) ≤ 2. Since none of P5, C4, C5 is 3-χS-colorable, G− u is a disjoint union of

some copies of K1, K2, P3, C3 and/or P4.
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Assume that dG(u) = 1. Since n(G) ≥ 4, G−u ' G′ ∈ {P3, C3, P4}. If G−u ' P3,

then connecting u with the central vertex of P3 we get G ' K1,3, otherwise connecting

u with an end-vertex of P3 we get a 3-χS-colorable graph P4, which is a contradiction.

If G − u ' P4, then connecting u with an end-vertex of P4 we get G ' P5, otherwise

connecting u with some vertex of degree 2 we get a graph which is not 4-χS-critical.

And, if G− u ' C3, we get G ' Z1.

Assume that dG(u) = 2. If G − u is not connected, then u has a neighbor in two

distinct components of G − u, implying that ∆(G) = 2 by Claim 1. Thus we get

G ' P5, since Pk is not 4-χS-critical for any k ≥ 6 and P4 is 3-χS-colorable. If G− u
is connected, then G − u ∈ {P3, C3, P4} since n(G) ≥ 4. Then, for G − u ' P3 we

get G ∈ {C4, Z1} and for G − u ' C3 we get G ' K4 − e; in any other case G is not

4-χS-critical.

Case 2. s1 ≥ 3.

If ∆(G) = 3, then n(G) = 4, implying that G ∈ {K1,3, Z1, K4 − e,K4}, for otherwise

we get a graph which is not 4-χS-colorable. If ∆(G) = 2, then since G is connected,

G ' Pk or Ck, k ≥ 4. Clearly Pk is not 4-χS-critical for any k ≥ 5, hence we get

G ' P4. For cycles, Ck is 4-χS-colorable if and only if k = 4, or s4 = 3 and k is

divisible by 4. And, when k > 4, Ck is not 4-χS-critical since χS(Ck − u) = 4 for any

u ∈ V (Ck) since Ck − u contains a P4 for which χS(P4) = 4. Thus G ' C4. Note that

the graphs K1,3, P4 and C4 are all 4-χS-critical.

Finally note that each of the graphs from the set {K1,3, C4, Z1, K4 − e,K4} are 4-χS-

critical for every packing sequence S with s1 ≥ 2, each of the graphs P6 and C6 are

4-χS-critical for s2 = 2 and s3 ≥ 3, the graph P5 is 4-χS-critical for s1 = 2 and s2 ≥ 3,

and the graph P4 is 4-χS-critical for s1 ≥ 3. �

6 χS-critical trees

Let S be a packing sequence with s1 = s2 = 1. Then every bipartite graph, in

particular every tree, admits a 2-χS-coloring. It follows that K2 is the only χS-critical

graph for such a packing sequence. On the other hand, if s2 ≥ 2, then the situation is

more interesting already on trees as the next result which extends [16, Proposition 5.1]

asserts.

Proposition 6.1 If k ≥ 2 and S is a packing sequence with s2 ≥ 2, then there exists

a k-χS-critical tree.
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Proof. Suppose first that s1 ≥ 2 (and, of course, s2 ≥ s1). Then K1,k−1 is a required

k-χS-critical tree.

Assume in the rest that s1 = 1 and (and s2 ≥ 2). Let Tk be the tree obtained from

K1,k−1 with the central vertex u and leaves w1, . . . , wk−1, by attaching k − 2 leaves to

each of the vertices wi, i ∈ [k − 1]. In particular, T2 = K2 and T3 = P5.

We claim that χS(Tk) = k. Let c be an arbitrary χS-coloring of Tk. If c(wi) = 1

holds for some i ∈ [k−1], then the k−1 neighbors of wi must receive pairwise different

colors, hence c uses at least k colors. On the other hand, if c(wi) 6= 1 for each i ∈ [k−1],

then c uses k−1 colors on the vertices wi and hence at least k colors all together. This

shows that χS(Tk) ≥ k. On the other hand, setting c(wi) = i + 1, i ∈ [k − 1], and

coloring every other vertex with color 1 yields χS(Tk) ≤ k. This proves the claim.

We have thus seen that χS(Tk) = k. If Tk is k-χS-critical, then we are done.

Otherwise, using Lemma 2.7, remove leaves of Tk one by one until a k-χS-critical tree

is obtained. �

In [16], k-χS-critical caterpillars were investigated for S = (1, 2, 3, . . . ). Here we

focus on existence of k-χS-critical caterpillars for some packing sequences with s1 = 1.

Recall that, for s2 = 1, the only χS-critical graph is K2, thus we consider s2 ≥ 2.

Proposition 6.2 Let k ≥ 2 be an integer and S = (1, sk−12 ) a packing sequence with

s2 ≥ 2. Then a k-χS-critical caterpillar exists if and only if k ≤ s2 + 2.

Proof. Let T be a caterpillar. Since any path has a (ss2+1
2 )-packing coloring repeating

the coloring pattern 2, 3, . . . , s2 + 2, we can color vertices of the spine of T with colors

2, 3, . . . s2 + 2 and then color all the leaves of T with color 1. Thus χS(T ) ≤ s2 + 2 for

an arbitrary caterpillar T .

On the other hand, any path of length greater than s2 has no (ss22 )-packing coloring.

Then, considering any path P of length greater than s2 and attaching at least s2 + 2

leaves to each vertex of P we get a caterpillar T with χS(T ) = s2 + 2. Iteratively

applying Lemma 2.7 to the leaves of T we find an (s2 + 2)-χS-critical caterpillar.

Continuing deleting leaves of T in this manner we can also get a k-χS-critical caterpillar

for any k ≤ s2 + 1. �

Now we construct an explicit k-χS-critical caterpillars for S = (1, sk−12 ) and any

k ≤ s2 + 2, k ≥ 2.

Example 1 Let S = (1, sk−12 ) be such that k ≤ s2. Let G1 be a caterpillar consisting

of a spine P of length k − 2 and adding one leaf to each vertex of P (see Fig. 3 (a)).

We show that G1 is k-χS-critical. First, since each color different from 1 can be used
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for only one vertex of G1 and color 1 can be used on at most k − 1 vertices, we have

χS(G1) ≥ k. On the other hand, we can color vertices of P with colors 2, 3, . . . , k and

all leaves of G1 with color 1, implying that χS(G1) = k.

Now we show that χS(G1 − x) < k for any x ∈ V (G1). Deleting any leaf x of G1

we get a graph in which we color all leaves of G1− x and the neighbor of x in G1 with

color 1, and we color the remaining k − 2 vertices of P with mutually distinct colors

2, 3, . . . , k−2, implying that χS(G1−x) < k. If x ∈ V (P ), then G1−x is disconnected

and consisting of one isolated vertex and one or two caterpillars C1, C2. Clearly, each

of C1, C2 has a spine of length smaller than k−1, implying that χS(Ci) < k for i = 1, 2.

Therefore G1 is k-χS-critical.

Figure 3: Caterpillars

Example 2 Let S = (1, sk−12 ) be such that k = s2+1. LetG2 be a caterpillar consisting

of a spine P = x1, x2, . . . , xk−1, adding one leaf yi to xi for each i = 1, . . . , k − 1 and

adding one more leaf zk−1 to xk−1 (see Fig. 3 (b)). We show that G2 is k-χS-critical.

First, since color 1 can be used for an independent set of G2, we have to color either xi
or all leaves adjacent to xi with some of the colors 2, 3, . . . , k for each i = 1, . . . , k − 1.

And, since we can use only one such color twice (for y1, and yk−1 or zk−1), we have

χS(G2) ≥ k. On the other hand, coloring vertices of P with colors 2, 3, . . . , k and

coloring all leaves of G2 with color 1, we get an k-χS-coloring of G2, implying that

χS(G2) = k.
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Now we show that χS(G2 − x) < k for any x ∈ V (G2). Deleting any leaf not

adjacent to xk−1 we get a graph in which we color all leaves of G2−x and the neighbor

of x in G2 with color 1, and we color the remaining k − 2 vertices of P with mutually

distinct colors 2, 3, . . . , k − 1, implying that χS(G2 − x) < k. If x is adjacent to xk−1,

say, x = zk−1, we color y1 and yk−1 with color 2, all internal vertices of P (one by one)

with colors 3, 4, . . . , k − 1 and all the remaining vertices with color 1. Thus, in this

case, χS(G − x) < k. If x ∈ V (P ), then G2 − x is disconnected and it consists of one

or two isolated vertices and one or two caterpillars C1, C2. Clearly, each of C1, C2 has

a spine of length smaller than k − 1, implying that χS(Ci) < k for i = 1, 2. Therefore

G1 is k-χS-critical.

Example 3 Let S = (1, sk−12 ) be such that k = s2+2. LetG3 be a caterpillar consisting

of a spine P = x1, x2, . . . , xk−1, adding one leaf yi to xi for each i = 3, . . . , k − 3, and

adding two leaves yi, zi to xi for each i = 1, 2, k−2, k−1 (see Fig. 3 (c)). We show that

G3 is k-χS-critical. First, since color 1 can be used for an independent set of G3, we

have to color either xi or all leaves adjacent to xi with some of the colors 2, 3, . . . , k−1

for each i = 1, . . . , k − 1. It is straightforward to check that we always need at least

k−1 such colors, implying that χS(G3) ≥ k. On the other hand, coloring vertices of P

with colors 2, 3, . . . , k and coloring all leaves of G3 with color 1, we get an k-χS-coloring

of G3, implying that χS(G3) = k.

Now we show that χS(G3 − x) < k for any x ∈ V (G3). Deleting any leaf x = yi
for some i = 3, 4, . . . , k − 3, we get a graph in which we can color all leaves of G3 − x
and the neighbor of x in G3 with color 1, and we color the remaining k − 2 vertices

of P with mutually distinct colors 2, 3, . . . , k − 1, implying that χS(G3 − x) < k. If,

up to symmetry, x = y1, then we can color x1 and all leaves of G3 − x different from

z1 with color 1, z1 and xk−1 with color 2, and the remaining k − 3 vertices of P one

by one with colors 3, . . . , k − 1, implying that χS(G3 − x) < k. Analogously, if, up to

symmetry, x = y2, then we can color x2, xk−1 and all leaves of G3 − x different from

z2, yk−1 and zk−1 with color 1, x1 and yk−1 with color 2, z2 and zk−1 with color 3, and

the remaining k − 4 vertices of P one by one with colors 4, 5, . . . , k − 1, implying that

χS(G3−x) < k. If x ∈ V (P ), then G3−x is disconnected and it consists of one or two

isolated vertices and one or two caterpillars C1, C2. Clearly, each of C1, C2 has a spine

of length smaller than k − 1, implying that χS(Ci) < k for i = 1, 2. Therefore G3 is

k-χS-critical.
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Concluding remarks

The criticallity studied in [16] for the packing chromatic number and the criticallity

investigated in this paper for the S-packing chromatic number refer to vertex-deleted

subgraphs. An equally legal criticallity concept is the one with respect to arbitrary

subgraphs, equivalently with respect to edge-deleted subgraphs. The seminal study [3]

on the latter concept for the packing chromatic number has been done independently

and at about the same time as [16]. It would hence be natural to study also the

edge-deleted critical graphs in the general context of S-packing colorings.

It was stated in [16] that it would be interesting to classify vertex-transitive, χρ-

critical graphs. Here we extend this claim by stating that it would also be of interest

to classify vertex-transitive, χS-critical graphs for each of the packing sequence S.
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